

MESA: Boost Ensemble Imbalanced Learning with MEta-SAmpler

Zhining Liu, Pengfei Wei, Jing Jiang, Wei Cao, Jiang Bian, and Yi Chang in 34th Conference on Neural Information Processing Systems (NeurIPS 2020)

Comparisons of MESA with existing imbalanced learning methods:

MOTIVATION

D Problem:

- Inconsistency between:
 - Class-imbalanced data representation
 - Class-balanced accuracy-oriented learning process
- Goal: learning unbiased models from class-imbalanced data

Limitations of Existing Work:

- The assumptions they made on the data may not hold, resulting in:
 - Unstable performance due to the sensitivity to outliers
 - High cost of computing the distance between instances.
 - Poor applicability because of the prerequisite of domain experts to hand-craft the cost matrix

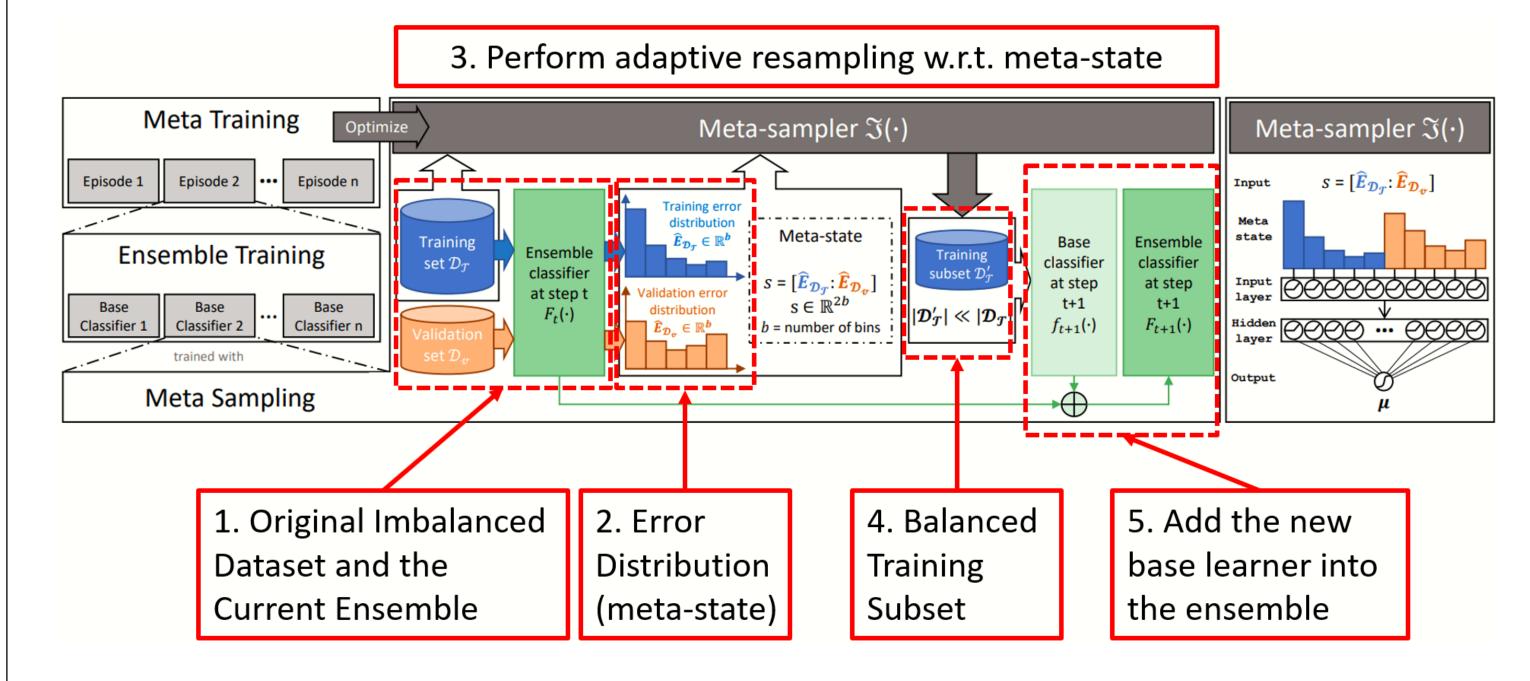
Category*	Representative(s)	Sample efficiency	Distance-based resampling cost	Domain kno- wledge free?	Robust to noi- ses/outliers?	Requirements	
RW	[31], [5]	$ \mathcal{O}(\mathcal{P} + \mathcal{N}) $	×	×	*	cost matrix set by domain exper	
US	[35], [42]	$\mathcal{O}(2 \mathcal{P})$	$\mathcal{O}(\mathcal{P})$	✓	×	well-defined distance metric	
OS	[6], [17]	$\mathcal{O}(2 \mathcal{N})$	$\mathcal{O}(\mathcal{P})$	✓	×	well-defined distance metric	
CS	[47], [44]	$\mathcal{O}(\mathcal{P} + \mathcal{N})$	$\mathcal{O}(\mathcal{P} \cdot \mathcal{N})$	✓	✓	well-defined distance metric	
OS+CS	[4], [3]	$\mathcal{O}(2 \mathcal{N})$	$\mathcal{O}(\mathcal{P} \cdot \mathcal{N})$	1	1	well-defined distance metric	
IE+RW	[12], [43]	$ \mathcal{O}(k(\mathcal{P} + \mathcal{N})) $	×	×	×	cost matrix set by domain expen	
PE+US	[2], [32]	$\mathcal{O}(2k \mathcal{P})$	×	✓	✓	-	
PE+OS	[46]	$\mathcal{O}(2k \mathcal{N})$	$\mathcal{O}(2k \mathcal{P})$	✓	✓	well-defined distance metric	
IE+RW+US	[39]	$\mathcal{O}(2k \mathcal{P})$	×	✓	×	-	
IE+RW+OS	[7]	$\mathcal{O}(2k \mathcal{N})$	$\mathcal{O}(2k \mathcal{P})$	1	×	well-defined distance metric	
ML	[41], [38], [48]	$ \mathcal{O}(\mathcal{P} + \mathcal{N}) $	×	*	1	co-optimized with DNN only	
IE+ML	MESA(ours)	$\mathcal{O}(2k \mathcal{P})$	×	✓	✓	independent meta-training	

under-sampling (US), over-sampling (US), cleaning-sampling (US), iterative ensemble (IE), parallel ensemble (PE),

THE PROPOSED MESA FRAMEWORK

• Overview of the proposed MESA Framework.

- We introduce a novel ensemble imbalanced learning (EIL) framework named MESA. It adaptively resamples the training set in iterations to get multiple classifiers and forms a cascade ensemble model. MESA directly learns a parameterized sampling strategy (i.e., meta-sampler) from data to optimize the final metric beyond following random heuristics.
- It consists of three parts: **meta sampling** as well as **ensemble training** to build ensemble classifiers, and **meta-training** to optimize the meta-sampler.



Meta-state.

- Histogram distribution of prediction error. It shows the distribution of "easy" and "hard" samples in finer granularity and provides the metasampler with information about bias/variance of the classifier and thus supporting its decision.
- See an example in the right figure.

Meta-sampling.

To prevent the usage of complex sampler model architecture, we use a **Gaussian** function trick to simplify the meta-sampling process and the sampler itself. The meta-sampler outputs a scalar $\mu \in [0, 1]$ based on the input meta-state, we then apply a Gaussian function $g_{u,\sigma}(x)$ over each instance's classification error to decide its (unnormalized) sampling weight, where $g_{\mu\sigma}(x)$ is defined as:

$$g_{\mu,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}.$$

Note that e is the Euler's number, $\mu \in [0, 1]$ is given by the meta-sampler and σ is a hyperparameter. For detailed discussions about this hyper-parameter setting, please see the appendix provided in the supplementary file.

D Ensemble Training.

Given a meta-sampler, we can **iteratively train new base classifiers using the dataset** sampled by the sampler. Please see the process in the figure on the left. Meta Training.

Main features of MESA.

- **Better performance.** Perform adaptive resampling based on meta-information to further boost the performance of ensemble classifiers;
- **Wide applicability.** Decouple model-training and meta-training for general applicability to different classifiers;
- **Transferability.** Train the meta-sampler over task-agnostic meta-data for crosstask transferability and reducing meta-training cost on new tasks.

The meta-sampler is expected to learn and adapt its strategy from the state(s) $action(\mu)$ -state(new s) interactions in the ensemble training process. This metatraining problem can be naturally approached via **reinforcement learning**. μ (the resampling parameter, meta-sampler's output) Action: *∆* generalization performance *Reward:*

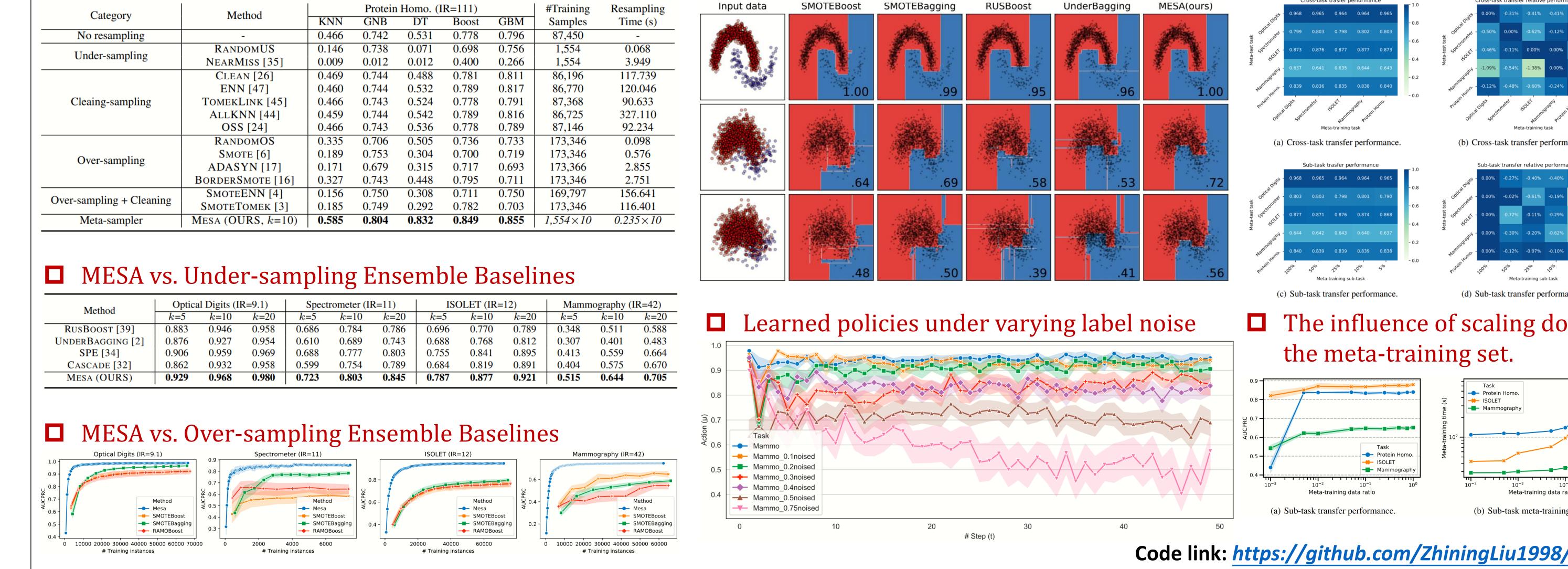
(before and after an update, estimated using the validation set) error distribution (on both training and validation sets) *State:*

EXPERIMENTAL RESULTS

MESA vs. Resampling Baselines

Category	Method	Protein Homo. (IR=111)					#Training	Resampling
		KNN	GNB	DT	Boost	GBM	Samples	Time (s)
No resampling	-	0.466	0.742	0.531	0.778	0.796	87,450	-
Under compling	RANDOMUS	0.146	0.738	0.071	0.698	0.756	1,554	0.068
Under-sampling	NEARMISS [35]	0.009	0.012	0.012	0.400	0.266	1,554	3.949
	CLEAN [26]	0.469	0.744	0.488	0.781	0.811	86,196	117.739
	ENN [47]	0.460	0.744	0.532	0.789	0.817	86,770	120.046
Cleaing-sampling	TOMEKLINK [45]	0.466	0.743	0.524	0.778	0.791	87,368	90.633
	ALLKNN [44]	0.459	0.744	0.542	0.789	0.816	86,725	327.110
	OSS [24]	0.466	0.743	0.536	0.778	0.789	87,146	92.234
	RANDOMOS	0.335	0.706	0.505	0.736	0.733	173,346	0.098
Quan compling	S MOTE [6]	0.189	0.753	0.304	0.700	0.719	173,346	0.576
Over-sampling	ADASYN [17]	0.171	0.679	0.315	0.717	0.693	173,366	2.855
	BORDERSMOTE [16]	0.327	0.743	0.448	0.795	0.711	173,346	2.751
	SMOTEENN [4]	0.156	0.750	0.308	0.711	0.750	169,797	156.641
Over-sampling + Cleaning	SMOTETOMEK [3]	0.185	0.749	0.292	0.782	0.703	173,346	116.401
Meta-sampler	MESA (OURS, $k=10$)	0.585	0.804	0.832	0.849	0.855	1,554×10	0.235×10

Synthetic Datasets



Cross/Sub-task Transferability.

